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A spherically topological analysis of stationary
black holes
Benjamin Puzantian

Abstract A black hole with zero angular momentum is said to be stationary and under certain conditions such a
black hole can represented as a sphere. This review examines Hawking’s topology theorem, the Schwarzschild
metric, novel solutions to Einstein’s equations, resonances of hyperbolic orbits around the event horizon for
spherical, stationary black holes, and analyzes their importance. It is suggested, that in the spherical stationary
black hole case, the Fourier analysis can be used to find the resonances due to Geometric scattering of hyperbolic
orbits and thus the outgoing energy fields from the event horizon can be found more precisely; allowing for the
adequate signal processing analysis to be found for such a field.
Keywords: Stationary black holes; General relativity; Fourier analysis; Hyperbolic orbits; Quasi-gravity; Geometric
scattering

Résumé
Un trou noir avec un moment cinétique nul est dit stationnaire. Dans certaines conditions, un tel trou noir peut
être représenté comme une sphère. Cette article examine le théorème de topologie de Hawking, la métrique de
Schwarzschild, les nouvelles solutions aux équations d’Einstein, les résonances des orbites hyperboliques autour de
l’horizon des événements pour les trous noirs stationnaires et sphériques, et analyse leur importance. Dans le cas du
trou noir sphérique stationnaire, on suggère l’utilisation de l’analyse de Fourier pour trouver les résonances dues à
la dispersion géométrique des orbites hyperboliques. Ainsi, on peut trouver les champs énergétiques sortants de
l’horizon des événements de façon plus précise ; permettant l’analyse de traitement du signal adéquat pour un tel
champ.
Mots Clés: Trous noirs stationnaires; Relativité générale; Analyse de Fourier; Orbites hyperboliques; Quasi-gravité;
Diffusion géométrique

Introduction
In 1915, on the front lines of World War I, Schwarzschild
calculated and discovered, through Einstein’s equations,
large masses that significantly distort the fabric of space-
time that are known today as black holes. In this re-
view, Hawking’s topology theorem, and the special case
of the Kerr metric of stationary black holes are exam-
ined. Furthermore, novel solutions to Einstein’s equa-
tions, and resonances due to geometric scattering of hy-
perbolic orbits around the event horizon of stationary
spherical black holes are outlined, and their hallmarks
are discussed. This paper aims to offer an introductory
outlook on the topology of spherical black holes. More-
over, it is argued that finding a spherical metric rep-
resenting the hyperbolic behaviour of matter around the
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event horizons of stationary black holes will allow for ade-
quate Fourier analysis calculations to obtain the photonic
energy fields radiating away from the event horizon.

Schwarzschild metric: a special case of the
Kerr metric and null geodesics
The metric that represents the stationary axisymmet-
ric (that is, in the well-behaved outside domain rotating
case when the Killing vector that generates the station-
ary symmetry becomes spacelike) black hole equilibrium
state can be represented by the following Kerr metric:

ds2 = (r2 + a2cos2θ)(dθ2 + sin2φ2)
+ 2(du+ asin2θdφ)(dr + asin2θdφ)

− (1 − 2mr
r2 + a2cos2θ

)(du+ asin2θdφ)2 (1)
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where a is a real constant, r is the radius from the event
horizon, and u is the time element (1). When the an-
gular momentum ma and the Schwarzschild mass m are
zero, then the special case of the Kerr metric, called the
Schwarzschild metric, can be seen to be:

ds2 = r2(dθ2 + sin2θdφ2)

+ dr2

1 − 2m
r

− (1 − 2m
r

)dt2 (2)

where r = 2m is the location where the field becomes
weak in terms of the mass (1).
When an outgoing null coordinate patch is analyzed,

the Kerr metric at a = 0 becomes:

ds2 = −(1 − 2m
r

)du2 + 2dudr

+ r2dudr + r2dθ2

+ sin2θdφ2 (3)

where x0 = u, x1 = r, x2 = θ, x3 = φ (1), that is the
usual spherical coordinate system.

Hawking’s Topology Theorem: The
Stationary Case
It has been shown that non-rotating stars of M > M�
(solar mass) will eventually deplete all of their nuclear
fuel and undertake catastrophic collapse, causing a sig-
nificant distortion in the fabric of spacetime. However, if
such a collapse is said to be spherically symmetric, then it
can be characterized using the Schwarzschild metric (2).
The Schwarzschild metric obeys the following character-
istics:
1. The star’s surface will exist inside the Schwarzschild

radius R = 2G
c2 M , where G is the universal gravita-

tional constant, c is the speed of light and M is the
mass of the black hole (2). Such a surface is said
to be a closed trapped surface; that is, a space-like
2-surface such that both future directed families of
null geodesics converge at each’s respective future
directed families of null geodesics orthogonal to it
converge i.e. such a strong gravitational field that
outwardly travelling light is pushed inwards will ex-
ist) (3,4).

2. There exists a spacetime singularity (2).
3. An observer positioned outside the singularity and

the Schwarzschild radius will not be able to phys-
ically observe the inside of the black hole (2).
Therefore, physical theories inside the Schwarzschild
radius are said to be unachievable (2). However,
through the Cauchy data on the spacelike surface
outside and near the Schwarzschild radius, physical
theories can be predicted (2).

If such a collapse occurs under these conditions (5) and
obeys the Schwarzschild metric, it must then be strongly
asymptotic and thus stationary (2). Indeed, matter in
proximity to this space obeys Maxwell’s equations; there-
fore, the matter in this space can be described with well-
behaved hyperbolic equations (2). Evidently, asymptotic
stationary black holes will have a Killing vector tangent
to the event horizon because they are invariant under
the horizontal parameter transformation (2). Moreover,
Israel (5, 6) showed that if the black hole is stationary,
static, and is empty or contains only a Maxwell field,
then the solution will have spherical symmetry. However,
if the space is not empty then the solutions on the event
horizons will be directed along the null generators (2).
A general result of Lichnerowicz (7) conveys that

within a stationary and empty black hole there exists a
region such that the Killing vector is spacelike (2). One
can conclude that the event horizon of this space will be
rotating with respect to infinity because a particle that
has a trajectory along the null geodesic generator of the
horizon is moving with respect to the stationary frame
(or the integral curves of the Killing vector) (2).
Essentially, Hawking’s black hole topology theorem

forms the event horizon into cross sectional spheres in
the case where the black hole obeys the dominant energy
condition (that is the condition that allows the mass-
energy of the universe can never flow at a speed faster
then the speed of light and contributes to the evolution
of universe) and is stationary in four dimensional asymp-
totically flat spacetimes (2,8).
Galloway and Schoen (9) extended Hawking’s theorem

of black hole topology to higher dimensions and con-
cluded that in higher dimensions, stationary black holes
are not necessarily spherical (7). It was shown that the
spacetime (Mπ+1, g) obeying the dominant energy con-
dition also satisfies the Einstein equations:

Rab − 1
2Rgab = Tab (4)

if, in addition, the energy-momentum tensor T satisfies
T (X,Y ) = TabX

aY a ≥ 0 for the vectors X, Y (7). For di-
mensions n ≥ 3, there exists a space-like hypersurface in
the space-time (Mπ+1, g) (7).If the outer apparent hori-
zon,

∑n−1 is of positive in V n unless n = 3, 4 (or Ricci
flat) that is of induced metric and thus both the tensors
X and TabUaKb vanish on

∑
(7).

A special solution that exists for dimension dimM =
5 or dim

∑
= 3 (assuming

∑
is orientable) is due to

calculations by Schoen-Yau (10,11) and Gromov-Lawson
(12,13). The

∑
’s topology is a finite connected spherical

sum of spaces (7). This sum of spherical spaces can be
expressed as a connected sum of spheres by the prime
decomposition theorem (7).
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Hence, Hawking’s topology theorem elegantly states
that when black holes are stationary they can unques-
tionably be represented topologically as spheres. Such a
topology can be manipulated mathematically to find the
signals of the energy fields of photons nearby through
Fourier analysis. The energy fields of photons will be dis-
cussed in the upcoming sections.

Solutions to Einstein’s Equations in
Spherical Black Holes
The theory of quasi-topological gravity has well-defined
properties on spherically symmetric backgrounds (14–
19) that allow the field equations to reduce to second
order differential equations with exact solutions (20). If
one were to maximize these symmetric spherical back-
grounds, then the corresponding linearized equations of
motion would suitably coincide with the Einsteinian lin-
earized equations (20). While quasi-gravity is a useful
theory for its avoiding the extra degrees of freedom re-
quired in Einsteinian gravity, it only becomes non-trivial
in dimensions (20).
Where the theory of quasi-gravity is non-trivial in di-

mensions n ≥ 5, the theory of Einsteinian cubic gravity
is non-trivial in four dimensions, consequently allowing
for static spherically symmetric solutions (21, 22) to be
represented as:

ds2 = −N2fdt2 + dr2

f
+ r2d

2∑

(d−2)k

(5)

where N is a constant, and d
∑2

(d−2)k is the line element
on a surface of constant scalar curvature K = +1, 0,−1
corresponding respectively to spherical, flat and hyper-
bolic topologies (20). The solution (4) to the Einsteinian
cubic gravity in four dimensions has a Schwarzschild-like
solution that is not true in higher dimensions (21,22).
The general metric for all dimensions was discovered

by Hennigar et al. [20]:

f(r) = 4πT (r − r+) +
n∑

i=2
an(r − r+)n (6)

where T is the Hawking temperature, r is the radius
of the event horizon,r+ is the outward radius from the
black hole, and an is the usual Taylor Series expansion
coefficient (20).
The Taylor series expansion about f(r) shows the dif-

ference between the black hole’s outer radius r+ and
its inner radius r. This difference characterizes the be-
haviour near the event horizon (20). Therefore, Hennigar
et al.’s quasi-topological gravity describes gravitational
fields around the event horizon of black holes and com-
pares the numerical results as the fields are emitted. The

expansion about the event horizon of a spherical and the
asymptotical expansion of a flat black hole are consistent;
hence, the theory was seen to be numerically accurate.
Nevertheless, Hennigar et al. do not assess what are

the physical implication of their quasi-topological gravity
theory.

Geometric Scattering and Resonances
Around the Event Horizon
Geometric scattering is a popular model (23–26) that is
used when describing the association between the reso-
nances and a representative sphere of hyperbolic orbits
in the stationary black hole case. Quasi-normal modes
(resonances) (27) on a well-defined strip below the real
axis with angular momenta l can be approximated by
the "pseudo-poles" (28):

(
± 1 ± 1

2 − i

2(k + 1
2)
)

(1 − 9Λm2)1/2

33/2m
(7)

where l = 1, 2, . . . , k(k = 0, 1, . . . ) with the resonances
having multiplicity 2l + 1, Λ is the cosmological con-
stant, and m is the mass of the black hole. Recall that
the Schwarzschild stationary black hole case occurs when
Λ = 0 (more specifically, when the angular momentum
is zero).
The resonances of black holes can be thought of as

pure tones, or more precisely; as frequencies and rates
of damping of signals emitted by the black hole while in
the company of perturbations (27). Therefore, the real
part of a black hole resonance relates to the frequency of
the emitted black hole signals while the imaginary part
of the resonance relates to the signals’ rate of decay in
time (28). These significantly large pure tone resonance
times are a property of the black hole and thus become
independent of the perturbation (28). On the other hand,
the stability of such a system under the perturbation will
correspond to the distance from a reference point of the
resonances (on the real axis) and thus at significantly
larger distances the system will be more stable (28).
A hyperbolic operator to Schwarzschild black hole for

the exterior of a black hole is:

� g = α−2D2
t − α2r−2Dr(r2α2) −Drα

2r−2∆w (8)

where α = (1 − 2m
r − 1

3 Λr2)1/2, and D = 1
i ∂ and ∆w are

the positive Laplacian on the 2-surface (28–30). Corre-
spondingly, particular resonances in the stationary scat-
tering phenomena with special solutions of (8) � gu = 0,
relating to the following operator on X:

P = α−2r−2Dr(r2α2)Dr + α2r−2∆w (9)

where P is the scattering resonance operator (28).
Through the method of the separation of variables and
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the Regge-Wheeler transformation, a family of one-
dimensional Schrödinger operators with potentials de-
caying at infinity that has some unique non-degenerate
maxima can be acquired (30). This resulting family of
one-dimensional Schrödinger operators can be repre-
sented by the Hamiltonian that is required to constitute
a single hyperbolic trajectory that unfolds the trapped
set from the classical flow of the black hole (28).
Evidently, the pure tones of black holes can be found,

generally, by the Fourier analysis for hyperbolic orbits of
spherical black holes. This will allow for a more rigor-
ously general theorem of energy fields of particles being
outward emitted by the stationary black holes then the
manipulation of the spherical symmetry technique.

Conclusion
Hawking’s topology theorem, and the special case of the
Kerr metric of stationary black holes are examined. Fur-
thermore, novel solutions to Einstein’s equations, and
resonances due to geometric scattering of hyperbolic or-
bits around the event horizon of stationary black holes
are outlined and their hallmarks are discussed. On non-
Euclidean space-times such as the extremely distorted
Hawking topological space-time present around black
holes, there do not exist theorems for the resonances
on hyperbolic trajectories. Therefore, the spherical sym-
metry of the black hole must be manipulated order to
find the resonances. Consequently, this paper suggests
performing an appropriate volume transformation with
a spherical Laplacian on the Schwarzschild metric such
that it is then transformed into Fourier space. As a re-
sult, a theorem that describes the resonances of the hy-
perbolic trajectories can be found that is more exact and
general then the spherical symmetry approach. In return,
by applying the Fourier analysis in the spherical black
hole case, a more exact theorem of the frequency that
is emitted from the spherical black hole’s signals under
perturbations will be found. Indeed, future research us-
ing Fourier analysis will allow for the resulting frequency
and decay in signal time to be articulated into a more
precise theorem that describes energy fields emitted out-
wardly from the event horizon to infinity through sig-
nal processing in extremely distorted space-times with
Hawking’s topology-like geodesics.
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