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Expressing the randomity of events – An analysis of
random number generation with given distributions
Carl Zhou

Abstract In cases where it is necessary to generate random numbers that obey specific distributions, some of those
distributions can be expressed as mathematical functions while others cannot. This is especially the case for
epidemiological, medical, and pharmaceutical investigations, where more accurate methods, utilising actual
distribution (from survey and experimental data) to generate random numbers may be required. In this study, three
methods are analyzed to demonstrate simple computation examples. These methods include: inverse transform,
acceptance-rejection, and Monte-Carlo simulations. Their applications are explored from a data analysis point of
view. Additionally, this article discusses a flexible and practical approach of statistical measures optimization, which
approximates the solution by fitting the statistical measures.
Keywords: Pseudo-random; Random number generator; Specified distribution; Monte Carlo simulation

Résumé Dans les cas où il est nécessaire de générer des nombres aléatoires qui obéissent à des distributions
spécifiques, certaines distributions peuvent être exprimées sous forme de fonctions mathématiques, alors que
d’autres ne peuvent pas l’être. Ceci est le cas pour les enquêtes épidémiologiques, médicales et pharmaceutiques,
où on exige parfois des méthodes plus précises qui utilisent la distribution actuelle (à partir des données
expérimentales et d’enquêtes) afin de générer des nombres aléatoires. Cette étude explore trois méthodes afin de
démontrer des exemples de calculs simples. Ces méthodes comprennent la transformée inverse, la méthode du rejet
et les simulations de Monte-Carlo. Leurs applications sont explorées à partir des analyses de base de données. En
outre, cet article traite d’une approche flexible et pratique l’optimisation des mesures statistiques, qui estime la
solution en ajustant les mesures statistiques.
Mots Clés: Pseudo-aléatoire; Générateur de nombres aléatoires; Distribution spécifiée; Simulation Monte-Carlo

1 Introduction
Random numbers, or stochastic numbers, are often nec-
essary for experimentation, that is, to describe stochas-
ticity in studies by generating random numbers instead
of performing mass data collection. Generally, random
numbers have three uses: (i) Sampling. e.g. sampling
a population representatively, or randomly distributing
laboratory animals into experimental groups, for exam-
ple; (ii) Optimizing model parameters. e.g. Monte-Carlo
method (1); (iii) Simulating population or events. e.g.
simulating the initial genetic status of a population, in
which the selection, genetic cross, and mutations are all
random. It can also be applied to queuing and resource
storage scenarios, which often require cost estimations
by performing simulations based on generated random
numbers.
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Since the 1950s, a number of studies have presented
methodologies of generations based on computation
mathematics and related technology. Because a mass of
random numbers is only made by computers, discus-
sions of the methodology can be reviewed in two stages.
In the computer’s early years, Marsaglia, Tausworthe,
Fishman, and Lewis systematically presented the theo-
retical analyses, which indicated the technical feasibility
and laid the theoretical foundations for generating ran-
dom numbers in the 1960s and 1970s (2–5). Since then,
the use of statistical simulations has accelerated due to
the development of computer technology and its wide
applications (6). Many researchers discussed and devel-
oped realistic approaches for various experiments (e.g.
Rubenstein, Devroye, Ripley, Dagpunar, Law, and Kel-
ton) (7–11). Most studies introduce approaches in detail
for generating random numbers on several popular dis-
tributions (e.g. Aiello et al., Deng and Lin, Ferguson et
al., L’Ecuyer, Luby, Marsaglia and Zaman, Niederreiter
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Figure 1: Method selection flow chart for constructing random number generators that obey different
distributions. Diamonds denote logical judgement, rectangles indicate methods or processes, dotted boxes mean type
of method and arrow lines illustrate the selection of methods.

and Shparlinski, Ross) (12–19). To describe various prac-
tical problems, however, not all distributions can be eas-
ily expressed by mathematical analytic formulas. When
performing data analysis, there is the frequently asked
question of how to generate random numbers with the
actual distributions. Especially for epidemiological, med-
ical, and pharmaceutical experiments, the need for pre-
cision might require the use of actual data distributions
collected from surveys, investigations, and experiments
to generate random numbers.
With regards to the aforementioned needs for real-

ising stochasticity, an analysis of different approaches
to generate random numbers is presented. These ap-
proaches include inverse transform, acceptance-rejection,
and Monte-Carlo simulations. As a powerful tool for the
application of simulation methods, the sampling tech-
nique is introduced and illustrated for solving the prob-
lems that have no analytical solutions. In other words,
this article derivates algorithms, which generate random
numbers based on several different calculations (Figure
1). The study objectives are to: (1) provide an overview of
three principal approaches for generating random num-
bers that describe the stochasticity of events based on
practical observations, and (2) analyze the random num-
ber generator based on inexpressible distributions and its
accuracy and efficiency for applications.

2 Existing Distributions Provided by
Statistical Software

Theoretically, random numbers are generated through
physical phenomena, such as coin tossing, dice rolling,
roulette, etc. These random numbers are called true ran-
dom numbers and they are relatively difficult to cre-
ate via computer. However, in practical application, the
use of pseudo-random numbers is often sufficient. These
number series appear to be random numbers, but they
are actually generated through a repeatable computation
using the computer (20–22). Utilizing pseudo-random
numbers with uniform distribution, many statistical soft-
ware packages can generate random numbers subjected
to various distributions. For example, Matlab can gen-
erate random numbers subjected to the distributions of
normal (randn), Beta (betarnd), binomial (binornd), chi-
square (chi2rnd), exponential (exprnd), F (frnd), and nu-
merous other function forms. If a desired distribution
cannot be constructed using a statistical software, fur-
ther calculations or transformations are required to gen-
erate these random numbers. The following sections sum-
marize some approaches that can be used. These meth-
ods all use the most basic pseudo-random number gen-
erator.
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Figure 2: Diagram of the transformation from uniform distribution x to exponential distribution y. (a) and
(b) illustrate all 1000 sample values x generated by uniform distribution; (c) and (d) show the converted random data
complying with y.

3 Random Generator Based on Expressible
Distributions

In some cases, the required distribution can be expressed
with a formula. This allows for easy mathematical pro-
cessing. A commonly used approach is called the inverse
transform method, which includes two steps that are
briefly outlined as follows.
Step 1: Assume X[0, 1] obeys uniform distribution

u(x) and its cumulative probability distribution function
U(x). Y [ay, y] obeys the desired distribution h(y) and
its cumulative probability distribution function H(y).
Then we solve U(x) and H(y), and let U(x) = H(y),
i.e.

∫ x

ax
u(t)dt =

∫ y

ay
h(t)dt, where x and y are two ran-

dom variables, and ax and ay are initial values. Note
that there is a one-to-one correspondence between x and
y. Because the left side of the equation is equal to x, we
obtain x = H(y).
Step 2: Solve the inverse function of x to y based on

U(x) = H(y). The inverse function is y = H − 1(x).
Therefore, we can generate random number y using x.
The following is a calculation example. Survey data

suggests that three newborns are delivered at a hospital
per hour on average. In order to simulate (not only to
calculate) the number of newborns delivered in the next
hour, a set of dummy data is required to represent the
delivery of a newborn after time T . Let us assume that
the dummy data meets the exponential distribution

e−kt or ra−kt (1)

Here we will use the latter to demonstrate the approach
(let the parameters be r = 2.0, a = 2.7, k = 3.0).
According to the example scenario, set: Uniform ran-

dom number x’s probability density function is

p(x) =
{

1, if0,≤ x ≤ 1
0, otherwise.

(2)

Its cumulative probability is U(x) =
∫ x

0 p(x)dx. The
desired probability density function is

p(y) =
{
ra−ky, y ≥ 0
0, y < 0

(3)

where y denotes the time in hours when no babies are
born. Its cumulative probability is H(y) =

∫ y

0 p(y)dy.
Since p(x) and p(y)’s cumulative probabilities are equal,
we have

∫ x

0
dx =

∫ y

0
ra−kydy (4)
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Table 1: Observation of a doctor’s time spent with
patients.
Time (minute) Number of Patients Probability

10 26 0.250
11 24 0.231
12 20 0.192
13 17 0.164
14 10 0.096
15 6 0.058
16 1 0.010

Total 104 1.0
The number of patients (observed data) is 104 (n = 104).

Solving it, we get x = −(ra−ky)/(k log a). Its inverse
function can then be derived as

y = −[log(−kx) + log(log a) − log r]/(k log a)(1) (5)

This is the random number generator that meets the dis-
tribution (ra−kt). Figure 2 displays the transformation
from uniform distribution x to exponential distribution
y. As demonstrated for this simulation, when T is 0.5
hours, the probability of no newborns delivered is 0.273.
In other words, the probability of at least one newborn
delivered is 0.727 in this time.

4 Random Generator Based on Inexpressible
Distributions

4.1 Observation-based distributions
4.1.1 Curve fitting
There will often be some need for curve fitting in many
practical applications. We hope to generate random num-
bers according to the probability distribution of the ac-
tual sample. These distributions derived from observed
samples vary greatly, and they often cannot be expressed
using existing function forms. In these cases, a suitable
function can be chosen, such as a polynomial function,
to fit the actual distribution. Then, we can use the in-
verse transform method to derive the distribution curve.
It is important to note that since the inverse function of
second- and higher-order polynomials is very complex,
it may be difficult to find a solution. Therefore, solv-
ing these inverse functions require optimization by com-
puter. In the following paragraph, the example of queu-
ing for a walk-in clinic will be used to demonstrate how
to solve such problems.
Example: According to survey data, the distribution

representing a doctor’s time spent with patients is nei-
ther Poisson nor negative exponential distribution, as
shown in Table 1 and Figure 3. Time cost calculation
depends on this distribution; we need to generate ran-
dom numbers to simulate the possible visitation times of

a number of patients (e.g. 300 patients). The derivation
of the distribution is presented as follows by fitting the
curve and solving its inverse function.
Let uniform random number x’s probability density

function be

p(x) =
{

1, 0 < x ≤ 1
0, otherwise

(6)

Its cumulative probability is U(x) =
∫∞

0 p(x)dx. The
observation data probability function is

p(y) = −0.00263y2+0.02690y+0.24863 (10 ≤ y ≤ 16)
(7)

where y denotes doctor’s time for each patient (Figure
3). Its cumulative probability is

H(y) =
∫ y

0
p(y)dy (8)

where H(y) is equal to 1. Since
∫∞

0 dx equals 1, let∫∞
0 dx =

∫ y

0 p(y)dy. We have

x = −0.000876667y3+0.01345y2+0.24863y = 2.95463
(9)

Figure 3: The distribution representing a doctor’s
time spent with patients based on observed data.
The circles denote the time samples (n = 7), and the solid
line displays the fitting curve based on the regression
function p(y).

The inverse function of x = f(y) is hard to express
in analytical form. We can solve it through programmed
optimization algorithms. The idea is to first generate 300
random numbers x (0 ≤ x ≤ 1), then find a y for every x
that is 10 ≤ y ≤ 16, until the precision of x− x ≤ 0.001
(or x−x = minimum) is satisfied, where x is the x that
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Figure 4: An example of random number generation under a specified probability density function. (a) and
(b) illustrate all 300 sample values generated by uniform distribution; (c) and (d) denote the converted random data
complying with the specified distribution shown in Figure 3.

has met the accuracy of the polynomial. After 300 x’s
have been fitted, we obtain all y values corresponding to
x (Figure 4).
The solution presented above shows that the resultant

random numbers distribution is close to the survey data
distribution (Figure 4). Clearly, good curve-fitting in-
creases the accuracy of the distribution, while poor fit-
ting will not yield a satisfactory estimate. If higher pre-
cision is required to match the two distributions (survey
data and random numbers), the following method (the
acceptance-rejection approach) is a very practical option.

4.1.2 The acceptance-rejection technique
The acceptance-rejection technique is simple to under-
stand. It can be expressed visually by a two-dimensional
area composed of x and y covered with randomly dis-
tributed dots. If the envelope of a given distribution curve
or probability density function is placed in this area, and
the dots above the line are rejected while the remain-
ing dots are accepted, then they will become the random
numbers we need (Figure 5). Ross suggested a judgement
approach, which may be summarised as follows (23):
Step 1. Specify P to include enough random numbers

p, having uniform probability density function.
Step 2. Specify Q to include enough random numbers

q, having uniform probability density function.
Step 3. Generate p and q concurrently as a random

pair. p is the x coordinate, while q is y coordinate.
Step 4. Specify a probability density function f(x).
Step 5. Compare the q of each point with the function

f(x).
Step 6. Reject the points if q > f(x). Accept the re-

maining points.
For example, we have the sampling results of a survey

for the heights of men with different education levels in a
city. The probability density of the survey results cannot
be expressed by a function. How can we produce a large
random number set (500) that complies with this survey
probability? The survey distribution curve obtained is
the solid black line in Figure 5; this example generated
3000 random numbers. The grey crosses above the black
line are rejected random numbers (2500), and the circles
below and on the line are the accepted random numbers
(500).

4.2 Assumption-based multiple variables and
distributions

In some cases, the required distribution does not come
from observational results, but from our subjective judg-
ment. This is often the case in parameter optimization,
especially for parameterizing complex models, such as
process-based models. If optimization of multiple param-
eters is needed, then it is necessary to generate random
numbers in a multidimensional space. In other words, the

OSURJ osurj.ca vol 1 · issue 1 · 2018 51



Figure 5: An example for generating random
numbers using the acceptance-rejection method.
The circles and crosses are accepted and rejected random
data, respectively.

acceptance-rejection method is still used, but when the
number of dimensions is greater than two, the time cost
will be huge. In the interest of saving time, it may be nec-
essary to use an effective algorithm, e.g. the Metropolis-
Hastings algorithm (24,25), to search for optimal param-
eters and to achieve rapid convergence. This is the appli-
cation of Markov Chain Monte Carlo (MCMC) method
(26). Here we employ exhaustion to illustrate this ran-
dom number generator.
For example, the empirical equation for predicting male

children’s height, weight, and lung capacity in a specific
city is

y = 0.01(b× w − a× h) − 0.1352 (10)

where y is lung capacity, h is height, w is weight. a
and b are undetermined parameters. Observed data is
shown in Table 2. Now we parameterize this equation
using statistic simulation instead of multiple regressions.
Assume a ranges from 0.0 to 1.0, and b ranges from 0 to
10.0. Assume the distribution of these two parameters is
uniform (Figure 6).
The algorithm can be summarized as follows:
Step 1. Generate a pair of random numbers (a, b)

within a predetermined range. Substitute them into
Equation 7.
Step 2. Obtain y based on observed h and w.
Step 3. Compare calculated y to measured y and go to

Step 1 until residual error sum becomes minimal.

Table 2: Observation of male children’s height
(h), weight (w), and lung capacity (y).
No. h w y No. h w y

1 145.8 34.5 2.3 16 155.4 39.1 2.5
2 159.6 48.0 3.0 17 144.8 33.0 2.5
3 137.7 29.9 2.0 18 154.4 42.6 2.3
4 152.2 44.3 2.8 19 157.1 38.5 2.5
5 160.4 40.2 2.8 20 147.7 31.4 1.5
6 168.4 49.1 2.9 21 157.8 37.2 2.0
7 153.2 32.0 1.7 22 154.1 35.2 2.0
8 153.6 41.5 2.7 23 154.4 32.4 1.7
9 150.0 39.9 2.0 24 147.6 34.2 2.5
10 133.4 32.5 1.8 25 171.1 41.8 2.7
11 161.9 45.9 2.7 26 134.9 27.3 1.3
12 144.9 32.0 1.8 27 152.1 35.7 1.8
13 156.8 37.5 2.7 28 146.8 37.8 2.2
14 161.1 37.7 2.0 29 155.1 32.4 1.7
15 150.7 33.6 2.2 30 154.1 36.2 2.0

The number of children (observed data) is 30 (n = 30). The
units are cm (h), kg (w), and litre (y).

Figure 6: Two-dimensional distribution of
parameters a and b in Equation 7. The circles
represent all random pairs that include coordinate values a
and b. Random numbers were generated to consist of 2000
pairs in this example. A point (a = 0.4558, b = 8.0766)
was found within the distribution as an optimal parameter
a and b.

This is an example of generating random numbers in
a two-dimensional distribution (Figure 6). In this way,
some parameter pairs can be solved. One of the pairs is
solved as a = 0.4558, b = 8.0766. They are close to the
optimal parameters. As the sample increases, the accu-
racy can be improved.

4.3 Parameter-based distributions
In model or parameter optimization, we may be required
to obtain several random numbers. The function form
of the distribution may not be required, but the sta-
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Figure 7: A generation of random data on a specified normal distribution.(µ = 65, σ = 80). The relative
differences are less than 1.0% for both specified mathematical expectation (µ) and variance (σ). The dots denote
generated numbers.

tistical measures of distribution must be specified, e.g.
at least the mathematical expectation (µ) and variance
(σ2) or standard deviation (σ). Optimization of statisti-
cal measures is needed in these cases. The algorithm can
be designed to generate random numbers by the Monte-
Carlo simulation method. The simulation progresses dy-
namically step by step. While samples are generated ade-
quately, the statistical measures of distribution approach
the specified values (27). When the residual error be-
tween the random number and specified value reaches
an acceptable low level, the simulation can end.
For example, the steps below demonstrate how to fit

the two statistical measures by generating 100 random
number sets (µ = 6.5, σ = 8; Figure 7).
Step 1. Generate two random numbers near µ.
Step 2. Generate the next random number, calculate

the µ and σ of the three random numbers, and compare
them with the specified value.
Step 3. If the error does not meet the acceptable level,

e.g. 2.0 for µ and 1.5 for σ, then abandon this random
number. Generate the next random number, repeat Step
3.
Step 4. If the error is accepted and meets the accept-

able level, accept this random number. Put the accepted
random numbers in the set. Generate the next random
number and repeat Step 3 until we have 100 accepted
random numbers (n = 100).
Figure 7 illustrates the state of simulation when n is

30, 60, and 100. µ and σ are constantly approaching
the specified value, finally reaching the relative error of
less than 1.1% (µ = 6.43, σ = 8.01). As more random
numbers are generated, the accuracy of the resulting dis-
tribution will increase.

5 Summary
Three main methods for constructing random number
generators, i.e. inverse transform, acceptance-rejection,
and Monte-Carlo simulations, have been analyzed in this
study by demonstrating applicable and simple compu-
tation experiments. As Section 3 explained, a random
generator is easily realized for widely used distributions
in study experiments. In practice, however, the distribu-
tions from observed data may not be close to the com-
mon forms. To generate random numbers that obey these
practical distributions, the approach application depends
on different cases. When selecting an appropriate ap-
proach, the issues of accuracy and efficiency are often
considered. For the curve fitting method, polynomials
can theoretically fit any continuous function of probabil-
ity density, but their inverse functions may not be derived
easily, especially for the inverse functions of fourth or-
der polynomials. The approximate solutions of an inverse
function are available by utilizing the numerical method
with consideration to both accuracy and efficiency. Simi-
larly, the accuracy and efficiency should still be balanced
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in the acceptance-rejection method. If the dimension is
more than three, searching for an optimal solution be-
comes a challenge. In that case, coding experiments using
Matlab or R would be necessary to finding an appropri-
ate polynomial to decrease computational time. Briefly,
random number generation under inexpressible distribu-
tions is an issue that we encounter in the applications of
statistical simulation. This analysis suggests that this is-
sue has flexible and diverse solutions, and always requires
a balance between accuracy and efficiency. The selection
of methods is illustrated in Figure 1. If the distribu-
tion density can be regressed with an expression, the ap-
proaches of curve fitting and inverse transform are suit-
able for building a random number generator. The merit
of this method is convenience, and the demerit is that
the use is limited by the form of distribution functions.
In the cases of distributions that show irregular forms,
the acceptance-rejection approach is a realistic option.
Additionally, this approach generates random numbers
strictly according to the given distribution curve (Fig-
ure 5); therefore, the accuracy is higher than the curve
fitting method. As for some special purpose experiments
such as the construction of assumption distributions or
parameter-based distributions, the simulation methods
can be flexibly utilized for various applications.
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