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Statistics has applications in many fields. The point behind 
all of these applications is that there are questions for 
which there is no obvious way that we can obtain definitive 
answers. The reason for this lies in variation, which can 
arise for many reasons, and this leads to uncertainty. The 
health sciences provides an excellent example of this as the 
variation among patients, such as physical, genetic and 
lifestyle characteristics, lead to different responses to a 
treatment for a health problem. We are then left with the 
questions of whether or not a treatment works and, if so, 
how well. 

To be a problem for which statistical methodology is appli-
cable, this variation must exhibit some regularity which we 
can model. The archetypal example of this is a population 
ƻ, perhaps consisting of all individuals suffering from a 
particular disease, and a measurement X which is mea-
sured for each member ǔ of ƻ. For example, X(ǔ) could be 
the blood pressure, measured in appropriate units, of indi-
vidual ǔ in ƻ. The population ƻ and the measurement X 
lead to a distribution of the characteristic over the popula-
tion as given by ƒX, where ƒX( ) is the proportion of indivi-
duals in ƻ that have X(ǔ) =  and we record this for each 
possible value  of X. So in a statistical application we 
want to know the distribution ƒX. If we can conduct a cen-
sus, namely, obtain X(ǔ) for every ǔ in ƻ, then we know ƒX 
exactly and there is no need for statistics. 

In general, however, we will not be able to conduct a cen-
sus and so we cannot know ƒX exactly. For example, sup-
pose we consider distributions ƒ1,X and ƒ2,X of mea-
surement X over where ƒi,X corresponds to giving each 
member of treatment i where this is supposed to result in a 
lowering of blood pressure. If treatment 1 corresponds to a 
standard, we might want to know if treatment 2 is different 
in the sense that ƒ1,X and ƒ2,X are materially different. 
Clearly, even if we could do a census, we cannot simulta-
neously know both distributions. The statistical solution to 
this problem is to select a subset from ƻ say ǔ1, . . . , ǔn, 
apply treatment 1 to ǔ1, . . . , ǔn1 and apply treatment 2 to 
ǔn1+1, . . . , ǔn. After measuring these individuals, we have a 
sample 1 = X(ǔ1), . . . , n2 = X(ǔn1 ) from ƒ1,X and a 
sample n1+1 = X(ǔn1+1), . . . , n = X(ǔn) from ƒ2,X. We will 
use these data to make inferences about differences bet-

ween ƒ1,X and ƒ2,X, which are correspondingly inferences 
about differences in the treatments. 

An important point here concerns how we should select ǔ1, 
. . . , ǔn from ƻ and the answer from statistics is unambi-
guous: we should use a random mechanism. Various rea-
sons can be put forward for this but the most compelling 
for me is that it guarantees the objectivity of the data, 
namely, the data were generated by a mechanism which 
the investigators had no way of controlling. This is an im-
portant contribution from statistics. 

The process we have described for generating data repre-
sents a gold standard. We do our very best to achieve it in 
any application. It is well-known, however, that it is rarely 
achieved in its ideal form. For example, we may not be able 
to sample from the full population ƻ but have to rely on 
local participants or, even worse, it may be that the data we 
use is the result of an observational study where no known 
random mechanism was applied to generate the data. In 
such circumstances qualifications have to be applied to any 
conclusions we reach based on a statistical analysis. For 
example, while we would like our conclusions to apply to 
the full population ƻ the fact that the data was not gene-
rated by random sampling from ƻ means that our conclu-
sions really don't apply that broadly. This doesn't mean 
that the results should be summarily dismissed as useless, 
only that we must be wary of any conclusions drawn. We 
can still consider the results of an analysis as evidence con-
cerning the questions of interest but just not at the highest 
level of evidence that we would have obtained through pro-
per random sampling. 

The important point here is that statistics works via esta-
blishing gold standards and in any applied statistical analy-
sis we strive hard to reach this standard as closely as pos-
sible to present the highest possible form of evidence. Any 
consumer of a statistical analysis must, however, ask 
themselves, what could have gone wrong because of any 
deficiencies in the way the data were collected. While the 
gold standard for the data collection phase of a statistical 
analysis is fairly easy to establish, and it is one to which 
most statisticians adhere to, the statistical inference or 
analysis phase is more problematical. There are a wide 
variety of opinions about the appropriate approach to sta-
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tistical inference and unfortunately different approaches 
sometimes conflict in the sense that they give contradictory 
answers. This is a fundamental ambiguity that statistics 
has yet to collectively resolve. 

Perhaps the most well known point of contention about 
inference is the Bayesian versus frequentist argument. 
There are many variations of this, and this short essay can't 
delve into all of them. The essence of the debate, however, 
can be summarized by saying that, while the Bayesian ap-
proach acknowledges the subjectivity in a statistical analy-
sis, and even tries to make a virtue of it, a frequentist make 
claims of objectivity for their inferences based upon the 
long-run behavior of these procedures. For example, a 95% 
confidence interval for an unknown characteristic of the 
distribution of X will cover the true value of the characte-
ristic in 95% of future samples of the same size we imagine 
taking from the same population. 

While the frequentist criterion seems reasonable, there are 
problems with this approach to such an extent that the wri-
ter of this essay is a Bayesian. There are several reasons for 
this. 

Perhaps foremost concerns the reason statistics exists as a 
subject. At least for me, statistics exists to tell people how 
one is to reason in statistical contexts. The archetypal sta-
tistical context is just as described in the first few para-
graphs. A theory that fails to tell us exactly how we are to 
reason in very simple situations like this cannot, in my 
view, be seen as an acceptable theory of statistical infe-
rence. And yet this is the case for frequentist approaches to 
statistical inference as there does not exist a compete 
theory of frequentist inference, free of ambiguities. 

One could argue that further research could one day fill in 
the gaps in a way that most statisticians find acceptable. 
This is certainly possible, but a detailed study of the pro-
blem does not make me optimistic. 

Another concern, with various approaches to statistical 
inference, lies with any claim of objectivity of the analysis. 
In reality, all statistical analyses depend on choices made 
by the analyst either explicitly or implicitly. For example, 
why do we often assume (choose) normality as a possible 
distribution of a quantitative variable X?  Whenever a sta-
tistical analysis is dependent on a choice like this, it is in-
herently subjective as the conclusions are dependent on 
the option chosen. This is not necessarily bad as it is often 
the case that we can check such choices against the only 
truly objective part of a statistical analysis, at least when it 

is collected correctly, the data. Indeed in a frequentist ana-
lysis we can check the sampling model against the data to 
see if the model is reasonable. This is known as model 
checking. Even if the model passes its checks, however, 
this does not make the sampling model, or the inferences 
drawn from it, objective. We have only followed good 
scientific practice to see if our assumption is in a sense fal-
sified by the data. There is a logical concomitant to this: we 
should not use ingredients in statistical analyses that can't 
be falsified by the data. This eliminates a number of ingre-
dients commonly used in statistical analyses such as loss 
functions. 

It is not well understood that the most controversial aspect 
of a proper Bayesian analysis, namely, the prior, which ex-
presses beliefs about the true ƒX, can be checked against 
the data. A 'falsified' prior is one where there is an indica-
tion that the truth lies in the tails of the prior. If such a 
prior has a big impact on the analysis, then surely we 
wouldn't want to use it just as we wouldn't use a sampling 
model where the data lay in the tails of every distribution 
in the model. A relevant reference for checking for prior-
data conflict can be found at the following link. 

http://ba.stat.cmu.edu/journal/2006/vol01/issue04/
evans.pdf 

Once we have a sampling model, a prior and the data, then 
it is possible to provide a measure of statistical evidence 
that leads to a complete theory of statistical inference. De-
tails on this can be found at the following link. 

http://ba.stat.cmu.edu/journal/2013/vol08/issue03/
evans.pdf 

All the ingredients used in this theory of statistical infe-
rence are falsifiable and no inference problems are left 
unanswered. Of course, this does not mean that all statisti-
cal problems are solved. In specific problems we still have 
to come up with relevant models, elicitation procedures for 
priors, and implement model checking, checking for prior-
data conflict and inference based upon the measure of sta-
tistical evidence. 

Beyond the data, statistical analyses are never objective as 
they are dependent on subjective choices made by the in-
vestigator. Perhaps this is true of all empirical scientific 
investigations. Part of the role of statistics is to tell us how 
to assess the effects and relevance of our subjective choices 
and, most importantly, give us a complete and logical ap-
proach to reasoning in statistical contexts. 


