The Importance of Longitudinal Neurocognitive Assessments in Heart Failure Patients Receiving a Left Ventricular Assist Device

Main Article Content

Sneha Raju
Vanessa Rojas-Luengas



Heart failure (HF) is a major global health concern that has continued to increase in incidence and prevalence, becoming a global epidemic. In Canada alone, there are 500,000 HF patients, with 50,000 new cases each year. Often, HF patients reach severe end stage HF (ESHF) and require a heart transplant or a left ventricular assist device (LVAD). Previous studies have shown that as the heart begins to fail, ESHF patients develop a global cognitive impairment (CI) that accompanies the reduction in blood pressure (BP) and cardiac output (CO). Several mechanisms have been attributed to the CI observed in ESHF patients. Cerebral hypoperfusion, due to a large decrease in CO, appears to be the most supported explanation. Although several studies to date have explored cognitive functioning after the treatment of HF, there is limited literature investigating the cognitive outcome in ESHF patients following LVAD implantation. Moreover, studies that examined the effect of LVAD implantation on cognition did not compare patient outcomes to pre-LVAD baseline levels. Taking into consideration the increasing number of EDHF patients in need of LVAD implantation each year, it is imperative to determine the effect of this intervention on CI in order to better inform LVAD patients and create effective rehabilitation programs for LVAD recipients.


L’insuffisance cardiaque (IC) est une préoccupation majeure de santé mondiale qui continue d’augmenter en incidence et en prévalence, devenant une épidémie mondiale. Au Canada seulement, 500 000 patients souffrent d’IC, avec 50 000 nouveaux cas chaque année. Souvent, les patients avec IC atteignent une phase terminale grave (ICT) et nécessitent une transplantation cardiaque ou un dispositif d’assistance ventriculaire gauche (DAVG). Des études antérieures ont démontré que lorsque le cœur est en insuffisance, les patients développent une déficience cognitive globale (DCG), accompagnant la réduction de la tension artérielle et du débit cardiaque. Plusieurs mécanismes ont été attribués à la DCG observée chez les patients en ICT. L’hypoperfusion cérébrale, en raison d’une diminution importante du débit cardiaque, semble être l’explication la plus soutenue. Bien que plusieurs études à ce jour ont exploré le fonctionnement cognitif suivant le traitement de l’IC, il existe une littérature limitée enquêtant le résultat cognitif chez les patients en ICT suivant l’implantation d’un DAVG. Par ailleurs, les études qui ont examiné l’effet de l’implantation de DAVG sur la cognition ne comparaient pas les résultats des patients avec leurs niveaux de base pré-DAVG. Prenant en considération le nombre croissant de patients en ICT en besoin d’implantation de DAVG chaque année, il est impératif de déterminer l’effet de cette intervention sur la DCG afin de mieux informer les patients avec DAVG et créer des programmes efficaces de réhabilitation pour les bénéficiaires de DAVG.

Article Details

Review & Clinical Practice
Author Biographies

Sneha Raju, Peter Munk Cardiac Center, Toronto General Hospital Faculty of Medicine, University of Toronto Multi-Organ Transplant Program, University Health Network, Toronto General Hospital​

Medical Student at the University of Toronto

Vanessa Rojas-Luengas, Institute of Medical Science, University of Toronto Multi-Organ Transplant Program, University Health Network, Toronto General Hospital​

Master's Student at Institute of Medical Sciences, University of Toronto


1. Lloyd-Jones DM. Lifetime Risk for Developing Congestive Heart Failure: The Framingham Heart Study. Circulation 2002;106:3068–3072.

2. Mcmurray JJV, Pfeffer MA. Heart failure. Lancet 2005;365:1877–1889.

3. Ammar KA et al. Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 2007;115: 1563–70.

4. Yau TM et al. Clinical Studies Community support of patients with a left ventricular assist device : The Toronto General Hospital experience. Canadian Journal of Cardiology 2009;25:377–381.

5. Giamouzis G, Triposkiadis F, Butler J, Westermann D, Giannakoulas G. Heart failure. Cardiology Research and Practice 2011;2011:159608.

6. Baker DW, Einstadter D, Thomas C, Cebul RD. Mortality trends for 23,505 Medicare patients hospitalized with heart failure in Northeast Ohio, 1991 to 1997. American Heart Journal 2003;146:258–264.

7. Leening MJG et al. Methods of data collection and definitions of cardiac outcomes in the Rotterdam Study. European journal of epidemiology 2012;27:173–85.

8. Abraham WT, Smith SA. Devices in the management of advanced, chronic heart failure. Nature Reviews Cardiology 2013;10:98–110.

9. Braunwald E. Heart failure. JACC: Heart failure 2013;1:1–20.

10. Picano E, Bruno RM, Ferrari GF, Bonuccelli U. Cognitive impairment and cardiovascular disease: so near, so far. International journal of cardiology 2014;175:21–9.

11. Novak V, Hajjar I. The relationship between blood pressure and cognitive function. Nature reviews. Cardiology 2010;7:686–98.

12. Dardiotis E et al. Cognitive impairment in heart failure. Cardiology Research and practice 2012;2012:595821.

13. Burns A, Zaudig M. Rapid review Mild cognitive impairment in older people. Lancet 2002;360:1963–1965.

14. Fleisher AS, Sowell BB, Gamst AC. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2007;68:1588–1595.

15. Gruhn N et al. Cerebral Blood Flow in Patients With Chronic Heart Failure Before and After Heart Transplantation. Stroke 2001;32:2530–2533.

16. Alves TCTF. Localized Cerebral Blood Flow Reductions in Patients With Heart Failure: A Study Using 99mTc-HMPAO SPECT. Journal of Neuroimaging 2005;15:150–156.

17. Ritchie K, Lovestone S. The dementias. Lancet 2002;360:1759–1766.

18. Bennett SJ, Sauv MJ. Cognitive Deficits in Patients With Heart Failure A Review of the Literature. Journal of Cardiovascular Nursing 2003;18:219–242.

19. Pressler SJ. Cognitive Functioning and Chronic Heart Failure A Review of the Literature (2002 – July 2007). Journal of Cardiovascular Nursing 2008;23:239–249.

20. Vogels RLC et al. Profile of cognitive impairment in chronic heart failure. Journal of the American Geriatrics Society 2007;55:1764–70.

21. Colluci WS, Braunwald E. Pathophysiology of heart failure. In: Zipes DP, editor. Braunwald’s Heart Disease: A textbook of cardiovascular medicine. 7th ed. Philadelphia: W.B. Saunders; 2005.

22. Haaland KY. Cardiogenic Dementia. Lancet 1977;1:1171.

23. Arnold JMO, Liu P, Demers C, et al. Canadian Cardiovascular Society consensus conference recommendations on heart failure 2006 : Diagnosis and management. Canadian Journal of Cardiology 2006;22:23–45.

24. Vogels RLC, Scheltens P, Schroeder-tanka JM, Weinstein HC. Cognitive impairment in heart failure : A systematic review of the literature. European Journal of Heart Failure 2007;9:440–449.

25. Rod NH, Andersen I, Prescott E. Psychosocial Risk Factors and Heart Failure Hospitalization: A Prospective Cohort Study. American Journal of Epidemiology 2011;174:672–680.

26. Bennett SJ, Pressler ML, Hays L, et al. Psychosocial variables and hospitalization in persons with chronic heart failure. Prog Cardiovasc Nurs 1997;12:4–11.

27. Dardiotis E et al. Cognitive impairment in heart failure. Cardiology Research and practice 2012;2012:595821.

28. Onder G et al. Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure. European Heart Journal 2005;26:226–233.

29. Lezak MD, Howieson DB, Bigler ED, and Tranel D. Neuropsychological Assessment. 5th ed. New York: Oxford University Press; 2012.

30. Stein J, Luppa M, Brähler E, König HH, Riedel-Heller SG. The assessment of changes in cognitive functioning: reliable change indices for neuropsychological instruments in the elderly - a systematic review. Dementia and geriatric cognitive disorders 2010;29:275–86.

31. Woodruff BK. Disorders of cognition. Seminars in Neurology 2011;31:18–28.

32. Bauer L et al. A brief neuropsychological battery for use in the chronic heart failure population. European Journal of Cardiovascular Nursing 2012;11:223–30.

33. Chan RCK, Shum D, Toulopoulou T, Chen EYH. Assessment of executive functions: review of instruments and identification of critical issues. Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists 2008;23:201–16.

34. Hoth KF, Poppas A, Moser DJ, Paul RH, Cohen RA. Cardiac dysfunction and cognition in older adults with heart failure. Cognitive and Behavioral Neurology 2008;21:65–72.

35. Incalzi RA et al. Verbal Memory Impairment in Congestive Heart Failure. Journal of Clinical and Experimental Neuropsychology 2003;25:14–23.

36. Mapelli D et al. Neuropsychological profile in a large group of heart transplant candidates. PloS one 2011;6:e28313.

37. Foster ER et al. Executive Dysfunction and Depressive Symptoms Associated With Reduced Participation of People With Severe Congestive Heart Failure. American Journal of Occupational Therapy 2011;65:306–313.

38. Athilingam P et al. Montreal Cognitive Assessment and Mini-Mental Status Examination compared as cognitive screening tools in heart failure. Heart & Lung 2011;40:521–9.

39. Putzke JD et al. Neuropsychological Functioning Among Heart Transplant Candidates : A Case Control Study. Journal of Clinical and Experimental Neuropsychology 2000;22:95–103.

40. Grubb NR, Simpson C, Fox KA. Memory function in patients with stable, moderate to severe cardiac failure. American Heart Journal 2000;140:E1–E5.

41. Hachinski V et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 2006;37:2220–41.

42. Petrucci RJ et al. Neurocognitive assessments in advanced heart failure patients receiving continuous-flow left ventricular assist devices. The Journal of Heart and Lung Transplantation 2009;28:542–9.
43. Tanne D et al. Cognitive functions in severe congestive heart failure before and after an exercise training program. International journal of cardiology 2005;103:145–9.

44. Trojano L et al. Cognitive impairment: a key feature of congestive heart failure in the elderly. Journal of neurology 2003;250:1456–63.

45. Schlösser RGM, Wagner G, Sauer H. Assessing the working memory network: studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience 2006;139:91–103.

46. Wen W et al. Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. The Journal of Neuroscience 2011;31:1204–12.

47. Scotia N et al. Subcortical Dementia : A Neurobehavioral Approach. Brain and Cognition 1996;249:230–249.

48. Bauer LC, Johnson JK, Pozehl BJ. Cognition in heart failure: an overview of the concepts and their measures. Journal of the American Academy of Nurse Practitioners 2011;23:577–85.

49. Hjelm C et al. The influence of heart failure on longitudinal changes in cognition among individuals 80 years of age and older. Journal of Clinical Nursing 2012;21:994–1003.

50. Gunstad J et al. Cardiac Rehabilitation Improves Cognitive Performance in Older Adults With Cardiovascular Disease. Journal of Cardiopulmonary Rehabilitation 2005;25:173–176.

51. Tanne D et al. Cognitive functions in severe congestive heart failure before and after an exercise training program. International Journal of Cardiology 2005;103:145–9.

52. Harkness K, Demers C, Heckman G, McKelvie RS. Screening for cognitive deficits using the Montreal cognitive assessment tool in outpatients ≥65 years of age with heart failure. The American Journal of Cardiology 2011;107, 1203–7.

53. Roman DD et al. Memory Improvement Following Cardiac Transplantation. Journal of Clinical and Experimental Neuropsychology 1997;19:692–697.

54. Nash DT, Fillit H. Cardiovascular disease risk factors and cognitive impairment. The American Journal of cardiology 2006;97:1262–5.

55. Pase MP et al. Blood pressure and cognitive function: the role of central aortic and brachial pressures. Psychological Science 2013;24:2173–81.

56. Qiu C, Winblad B, Fratiglioni L. Low diastolic pressure and risk of dementia in very old people: a longitudinal study. Dementia and Geriatric Cognitive Disorders 2009;28:213–9.
57. Rose KM et al. Orthostatic hypotension and cognitive function: the Atherosclerosis Risk in Communities Study. Neuroepidemiology 2010;34:1–7.

58. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of Applied Physiology 2006;100:328–35.

59. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke 1989;20:45–52.

60. Lipsitz LA, Mukai S, Hamner J, Gagnon M, Babikian V. Dynamic Regulation of Middle Cerebral Artery Blood Flow Velocity in Aging and Hypertension. Stroke 2000;31:1897–1903.

61. Novak V, Novak P, Spies JM, Low PA. Autoregulation of Cerebral Blood Flow in Orthostatic Hypotension. Stroke 1998;29:104–111.

62. Hu K et al. Altered Phase Interactions between Spontaneous Blood Pressure and Flow Fluctuations in Type 2 Diabetes Mellitus: Nonlinear Assessment of Cerebral Autoregulation. Physica A 2008;387:2279–2292.

63. Novak V et al. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomedical Engineering 2004;3:39.

64. Rose KM et al. Orthostatic hypotension predicts mortality in middle-aged adults: the Atherosclerosis Risk In Communities (ARIC) Study. Circulation 2006;114:630–6.

65. Fedorowski A et al. Consequences of orthostatic blood pressure variability in middle aged men. J. Hypertens. 2010;28:551-559.

66. Kahinen-Vare M et al. Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age. Aging Clin. Exp. Res. 2004;16:147-152.

67. Reitz C, Tang MX, Manly J, Mayeux R, Luchsinger JA. Hypertension and the risk of mild cognitive impairment. Arch. Neurol. 2007;64:1734-1740.

68. Yap PLK, Niti M, Yap KB, Ng TP Orthostatic hypotension, hypotension and cognitive status: early comorbid markers of primary dementia? Dementia and Geriatric Cognitive Disorders 26, 239–46 (2008).

69. Zuccala G et al. Hypotension and cognitive impairment: selective association in patients with heart failure. Neurology. 2011;57:1986-1992.

70. Samuels, M. a Can cognition survive heart surgery? Circulation 2006;113: 2784–6.
71. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovascular Psychiatry and Neurology 2012;2012:367516.

72. Busatto GF. Regional cerebral blood flow reductions, heart failure and Alzheimer’s disease. Neurological Research 2006;28:579–587.

73. Zuccalà G, Cattel C, Manes-Gravina E, et al. Left ventricular dysfunction: A clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997;63:509-512.

74. Putzke JD, Williams MA, Rayburn BK, Kirklin JK, Boll TJ. The relationship between cardiac function and neuropsychological status among heart transplant candidates. J Card Fail. 1998;4:295–303.

75. Bruce KM, Yelland GW, Smith JA, Robinson SR. Recovery of cognitive function after coronary artery bypass graft operations. The Annals of Thoracic Surgery 2013;95:1306–13.

76. Newman MF et al. Longitudinal Assessment of Neurocognitive Function After Coronary-Artery Bypass Surgery. New England Journal of Medicine 2011;344:395–403.

77. Zeger SL, Ph D, Mckhann GM. Cognitive and Neurologic Outcomes after Coronary-Artery Bypass Surgery. New England Journal of Medicine 2012;366:250–257.

78. Roselli EE et al. Adverse events during reoperative cardiac surgery: frequency, characterization, and rescue. The Journal of Thoracic and Cardiovascular surgery 2008;135:316–23, 323.e1–6.

79. Barbut D et al. Cerebral emboli detected during bypass surgery are associated with clamp removal. Stroke 1994;25:2398–2402.

80. Barbut D, Yao FS, Hager DN, Kavanaugh P, Trifiletti RR, Gold JP. Compassion of Transcranial Doppler ultrasonography to monitor emboli during coronary artery bypass surgery. Stroke. 1996;27:87-90.

81. Fischer GW, Silvay G. Cerebral oximetry in cardiac and major vascular surgery. HSR Proceeding in Intensive Care and Cardiovascular Anesthesia 2010;2.

82. Vretzakis G et al. Cerebral oximetry in cardiac anesthesia. Journal of Thoracic disease 2014;6:S60–9.

83. Yao FSF, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia 2004;18:552–558.

84. Murkin JM et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized prospective study. Anesthesia and Analgesia. 2007;104:51-58.
85. van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia 2012;67:280–93.

86. Slater JP et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. The Annals of Thoracic Surgery 2009;87:36–44, discussion 44–5.