Three-Dimensional Printing and Medical Education: A Narrative Review of the Literature
Main Article Content
Abstract
Objectives: Three-dimensional (3D) printing has emerged in the past decade as a promising tool for the world of medicine. The focus of this article is to review how 3D printed models have been used in medical education.
Methods: PubMed was the article database used, and the search criteria included the terms 3D printing and education. The exclusion criteria filtered out articles that were older than ten years, were not in English, and did not target a human population. There were 90 discovered articles, and 38 appropriate articles were determined after reviewing titles and abstracts.
Results: Three main themes emerged from this review: general medical education, surgical education, and patient education. The more specific findings can be further divided into: using 3D printed models for teaching anatomy and simulation training; and preoperative planning, intraoperative guidance, and postoperative evaluation.
Conclusions: The general consensus was that 3D haptic modelling was a useful tool for educating trainees, staff physicians, and patients. The models helped in increasing participants’ understanding of anatomy and pathologies, and improving trainee skill set and confidence. There is much support to continue research in this area and to further develop ways in which 3D printing can help improve medical education.
Objectifs : L’impression tridimensionnelle (3D) s’annonce comme un outil prometteur pour le monde de la médecine. Le présent article révisera comment les méthodes d’impression 3D ont été utilisées dans l’éducation médicale.
Méthodes : La base de données utilisée pour les articles fut PubMed et les critères de recherche ont inclus les termes impression 3D et éducation. Les critères d’exclusion ont omis des articles qui dataient de plus de dix ans, qui n’étaient pas en anglais, et qui n’avaient pas comme cible la population humaine. Il y a 90 articles qui furent trouvés en tout et 38 de ces articles ont été jugés adéquats pour la révision.
Résultats : Trois grands thèmes ont été ressortis lors de cette révision : éducation médicale générale, éducation chirurgicale, et éducation des patients. De façon plus précise, les thèmes spécifiques suivants furent dégagés : l’utilisation d’impression de modèles 3D pour l’enseignement de l’anatomie et la formation par simulation, la préparation préopératoire, le guide intraopératoire, et l’évaluation postopératoire.
Conclusion : Les modèles haptiques 3D étaient reconnus comme un outil efficace pour éduquer les stagiaires, les médecins, et les patients. Ces modèles ont aidé à augmenter la compréhension de l’anatomie et de la pathologie des participants et ont augmenté la confiance et les habiletés des stagiaires. Ces preuves démontrent l’importance de continuer la recherche dans ce domaine afin de développer davantage de façons d’optimiser l’éducation médicale à l’aide de l’impression tridimensionnelle.
Article Details
- Authors publishing in the UOJM retain copyright of their articles, including all the drafts and the final published version in the journal.
- While UOJM does not retain any rights to the articles submitted, by agreeing to publish in UOJM, authors are granting the journal right of first publication and distribution rights of their articles.
- Authors are free to submit their works to other publications, including journals, institutional repositories or books, with an acknowledgment of its initial publication in UOJM.
- Copies of UOJM are distributed both in print and online, and all materials will be publicly available online. The journal holds no legal responsibility as to how these materials will be used by the public.
- Please ensure that all authors, co-authors and investigators have read and agree to these terms.
- Works are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
2. Li Z, Li Z, Xu R, et al. Three-dimensional printing models improve under¬standing of spinal fracture—A randomized controlled study in China. Sci Rep. 2015;5(11570):1–9.
3. O’Reilly MK, Reese S, Herlihy T, et al. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat Sci Educ. 2016;9(1):71–79.
4. Torres K, Staskiewicz G, Sniezynski M, Drop A, Maciejewski R. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. Folia Morphol (Warsz). 2011;70(1):1–4.
5. Lim KH, Loo ZY, Goldie SJ, Adams JW, McMenamin PG. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy. Anat Sci Educ. 2016;9(3):213–221
6. Huang W, Zhang X. 3D Printing: Print the future of ophthalmology. Invest Ophthalmol Vis Sci. 2014;55(8):5380–5381.
7. McMenamin PG, Quayle MR, McHenry CR, Adams JW. The production of anatomical teaching resources using three‐dimensional (3D) printing tech¬nology. Anat Sci Educ. 2014;7(6):479–486.
8. Vaccarezza M, Papa V. 3D printing: a valuable resource in human anatomy education. Anat Sci Int. 2015;90(1):64–65.
9. Abla AA, Lawton MT. Three-dimensional hollow intracranial aneurysm mod¬els and their potential role for teaching, simulation, and training. World Neurosurg. 2015;83(1):35–36.
10. Bustamante S, Bose S, Bishop P, Klatte R, Norris F. Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J Cardiothorac Vasc Anesth. 2014;28(4):1134–1137.
11. Costello JP, Olivieri LJ, Krieger A, et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular sep¬tal defect models for simulation in medical education. World J Pediatr Con¬genit Heart Surg. 2014;5(3):421–426.
12. Costello JP, Olivieri LJ, Su L, et al. Incorporating three‐dimensional printing into a simulation‐based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10(2):185–190.
13. Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–341.
14. Bernhard JC, Isotani S, Matsugasumi T, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34(3):337–345.
15. Gerstle TL, Ibrahim AM, Kim PS, Lee BT, Lin SJ. A plastic surgery appli¬cation in evolution: three-dimensional printing. Plast Reconstr Surg. 2014;133(2):446–451.
16. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter- Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg. 2015;2(25):1–14.
17. Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg. 2015;29(5):712–714.
18. Ryan JR, Chen T, Nakaji P, Frakes DH, Gonzalez LF. Ventriculostomy simula¬tion using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosurg. 2015;84(5):1333–1339.
19. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ. 2014;71(1):14–17.
20. Youssef RF, Spradling K, Yoon R, et al. Applications of three‐dimensional printing technology in urological practice. BJU Int. 2015;116(5):697–702.
21. Hochman JB, Rhodes C, Wong D, Kraut J, Pisa J, Unger B. Comparison of ca¬daveric and isomorphic three‐dimensional printed models in temporal bone education. Laryngoscope. 2015;125(10):2353–2357.
22. Rose AS, Kimbell JS, Webster CE, Harrysson OL, Formeister EJ, Buchman CA. Multi-material 3D models for temporal bone surgical simulation. Ann Otol Rhinol Laryngol. 2015;124(7):528–536.
23. Bizzotto N, Sandri A, Regis D, Romani D, Tami I, Magnan B. Three-dimension¬al printing of bone fractures: a new tangible realistic way for preoperative planning and education. Surg Innov. 2015;22(5):548–551.
24. Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2015; Epub ahead of print.
25. Scawn RL, Foster A, Lee BW, Kikkawa DO, Korn BS. Customised 3D printing: an innovative training tool for the next generation of orbital surgeons. Or¬bit. 2015;34(4):216–219.
26. Fasel JH, Uldin T, Vaucher P, Beinemann J, Stimec B, Schaller K. Evaluating preoperative models: a methodologic contribution. World Neurosurg. 2015; Epub ahead of print.
27. Khan IS, Kelly PD, Singer RJ. Prototyping of cerebral vasculature physical models. Surg Neurol Int. 2014;5:11.
28. Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time?. World Neurosurg. 2013;80(3):233–235.
29. Mashiko T, Otani K, Kawano R, et al. Development of three-dimensional hol¬low elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World neurosurg. 2015;83(3):351–361.
30. Tai BL, Rooney D, Stephenson F, et al. Development of a 3D-printed ex¬ternal ventricular drain placement simulator: technical note. J Neurosurg. 2015;123(4):1070–1076.
31. Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T. Utility of multimate¬rial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg. 2014;120(2):489–492.
32. Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18(3):294–306.
33. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: develop¬ment and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ. 2014;71(5):762–767.
34. Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch ob¬struction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg. 2016;22(2):238–240.
35. Mahmood F, Owais K, Montealegre-Gallegos M, et al. Echocardiography de¬rived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth. 2014;17(4):279–283.
36. Liu YF, Xu LW, Zhu HY, Liu SS. Technical procedures for template-guided sur¬gery for mandibular reconstruction based on digital design and manufactur¬ing. Biomed Eng Online. 2014;13(63):1–15.
37. Spottiswoode BS, Van den Heever DJ, Chang Y, et al. Preoperative three-di¬mensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact Funct Neurosurg. 2013;91(3):162–169.
38. Pietrabissa A, Marconi S, Peri A, et al. From CT scanning to 3-D printing technology for the preoperative planning in laparoscopic splenectomy. Surg Endosc. 2016;30(1):366–371.
39. Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol. 2016;45(1):2–9.