Gene Therapy and Modification as a Therapeutic Strategy for Cancer
Main Article Content
Abstract
Gene therapy is an exciting new field of personalized medicine, allowing for medical procedures that can target diseases such as cancer in novel ways. Technologies that involve gene transfer treatments allow for the insertion of foreign DNA into tumour cells, resulting in restored protein expression or altered function. Gene therapy can also be used as a form of immunotherapy, either by modifying cancer cells to make them better targeted by the immune system, or by modifying the body’s immune cells to make them more aggressive towards tumours. Additionally, oncolytic virotherapy uses classes of genetically modified viruses that can specifically target and interfere with tumour cells. The ongoing development of the CRISPR/Cas9 gene editing tool may also have promise in future therapeutic applications, with the tool being capable of removing cancer-causing, latent viral infections, such as HPV, from afflicted cells. Nonetheless, there are still many questions of safety, efficacy, and commercial viability which remain to be resolved with many gene therapy procedures. There is also emerging controversy over the ethical, legal, and moral implications that modifying the genetic content of human beings will have on society. These concerns must be confronted and addressed if the benefits promised by gene therapy are to be properly realized.
La thérapie génétique est un nouveau domaine d’étude médicale personnalisée qui permet de cibler des maladies spécifiques comme le cancer de façon innovatrice. Cette thérapie utilise le transfert de gènes avec une insertion d’ADN étrangère dans les cellules cancéreuses dans le but de restaurer l’expression des protéines et de retrouver la fonction cellulaire. La thérapie génétique peut aussi être utilisée comme une forme d’immunothérapie, soit en modifiant les cellules cancéreuses pour qu’elles soient mieux ciblées par le système immunitaire ou en modifiant les cellules immunitaires du corps pour les rendre plus agressives envers les tumeurs. De plus, une virothérapie oncolytique utilise des virus génétiquement modifiés qui peuvent cibler spécifiquement et interférer avec des cellules cancéreuses. Le développement du système d’édition génétique CRISPR/Cas9 s’avère prometteur pour les applications thérapeutiques futures. Cet outil est capable d’enlever les infections virales latentes dans les cellules affectées qui peuvent causer le cancer, tel que l’HPV. Malgré ces découvertes, plusieurs questions importantes demeurent quant à la sécurité et à l’efficacité de leur application. Il s’agit d’un domaine controversé avec des implications éthiques, légales, et morales, car le tout implique une modification du contenu génétique humain. Ces inquiétudes doivent être adressées afin de pouvoir continuer à explorer les bienfaits de cette thérapie génétique. En poursuivant la recherche dans ce domaine, il serait possible de valider cette thérapie et optimiser ses bienfaits.
Article Details
- Authors publishing in the UOJM retain copyright of their articles, including all the drafts and the final published version in the journal.
- While UOJM does not retain any rights to the articles submitted, by agreeing to publish in UOJM, authors are granting the journal right of first publication and distribution rights of their articles.
- Authors are free to submit their works to other publications, including journals, institutional repositories or books, with an acknowledgment of its initial publication in UOJM.
- Copies of UOJM are distributed both in print and online, and all materials will be publicly available online. The journal holds no legal responsibility as to how these materials will be used by the public.
- Please ensure that all authors, co-authors and investigators have read and agree to these terms.
- Works are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
2. Varmus H. The new era in cancer research. Science. 2006;312(5777):1162– 1165.
3. Siegel R, Desantis C, Virgo K, et al. Cancer treatment and survivorship statis¬tics, 2012. CA Cancer J Clin. 2013;62(4):220–241.
4. Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol. 2010;2010:174378.
5. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–227.
6. Hermonat P, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. PNAS. 1984;81(20):6466–6470.
7. Li Y, Li B, Li C, Li L. Key points of basic theories and clinical practice in rAd-p53 (Gendicine) gene therapy for solid malignant tumors. Expert Opin Biol Ther. 2015;15(3):437–454.
8. Gordon E, Hall F. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10(5):819–832.
9. Chawla SP, Chua VS, Fernandez L, et al. Advanced phase I/II studies of targeted gene delivery in vivo: intravenous Rexin-G for gemcitabine-re¬sistant metastatic pancreatic cancer. Mol Ther Nature Publishing Group. 2010;18(2):435–441.
10. Fischer A, Hacein-bey-abina S, Cavazzana-calvo M. Gene therapy for prima¬ry adaptive immune deficiencies. J Allergy Clin Immunol.
2011;127(6):1356– 1359.
11. Ohlfest JR, Demorest ZL, Motooka Y, et al. Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the Sleeping Beauty transpo¬son causes tumor regression and improves survival in mice bearing intracra¬nial human glioblastoma. Mol Ther. 2005;12(5):778–788.
12. Patil S, Rhodes D, Burgess D. DNA-based therapeutics and DNA delivery sys¬tems: a comprehensive review. AAPS J. 2005;7(1):E61–E77.
13. Zinn E, Pacouret S, Khaychuk V, et al. In silico reconstruction of the vi¬ral evolutionary lineage yields a potent gene therapy vector. Cell Rep. 2015;12(6):1056–1068.
14. Armstrong AC, Eaton D, Ewing JC. Cellular immunotherapy for cancer. BMJ. 2001;323(7324):1289–1293.
15. Nawrocki S, Wysocki P, Mackiewicz A. Genetically modified tumour vac¬cines: an obstacle race to break host tolerance to cancer. Expert Opin Biol Ther. 2001;1(2):193–204.
16. Hege K, Jooss K, Pardoll D. GM-CSF gene-modifed cancer cell immunothera¬pies: of mice and men. Int Rev Immunol. 2006;25(5-6):321–352.
17. Eager R, Nemunaitis J. GM-CSF gene-transduced tumor vaccines. Mol Ther. 2005;12(1):18–27.
18. Lipson E, Sharfman W, Chen S, McMiller T, Pritchard T, Salas J. Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J Transl Med. 2015;13:214–238.
19. Rosenberg S. Raising the bar: the curative potential of human cancer im¬munotherapy. Sci Transl Med. 2012;4(127):127ps8.
20. Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engi¬neered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917– 924.
21. Sharpe M, Mount, N. Genetically modified T cells in cancer therapy: oppor¬tunities and challenges. Dis Model Mech. 2015;8(4):337–350.
22. Russell S, Peng K, Bell J. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–670.
23. Guo Z, Thorne S, Bartlett D. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta. 2008;1785(2):217–231.
24. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98(5):298–300.
25. Barrangou R, May AP. Unraveling the potential of CRISPR/Cas9 for gene therapy. Expert Opin Biol Ther. 2014;15(3):1–4.
26. Yu L, Wang X, Zhu D, et al. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. Onco Targets Ther. 2014;8:37–44.
27. Platt R, Chen S, Zhou Y. CRISPR/Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–455.
28. Wang Z, Pan Q, Gendron P, et al. CRISPR/Cas9-derived mutations both in¬hibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15(3):1–9.
29. Doudna J, Charpentier E. The new frontier of genome engineering with CRISPR/Cas9. Science. 2014;346(6213):1258096.
30. Lokody I. Genetic therapies: correcting genetic defects with CRISPR-Cas9. Nat Rev Genet. 2014;15(2):63.
31. Baltimore D, Berg P, Botchan M, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36– 38.
32. Lanphier E, Urnov F, Haecker S, Werner M, Smolenski J. Don’t edit the hu¬man germ line. Nature. 2015;519(7544):410–411.
33. Ishii T. Potential impact of human mitochondrial replacement on global policy regarding germline gene modification. Reprod Biomed Online. 2014;29(2):150–155.