Triple Negative Breast Cancer: A review of common therapeutic Targets and Current Treatment options.
Main Article Content
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer which lacks ER, PR, and HER2 expression. It is characterized by poor prognosis and resistance to standard treatment forms for breast cancer. Chemotherapy is still currently the core neo-adjuvant treatment option for patients with TNBC, although it has mixed levels of efficacy on overall survival and many serious side effects. Platinum- based therapies have been used to treat TNBC in conjunction with chemotherapy, but they are not a widely effective treatment due to the heterogeneity of TNBC. For this reason, other novel approaches, particularly those which target molecular components involved in TNBC pathogenesis, are being investigated. Angiogenesis inhibitors, which include monoclonal antibodies or small molecules that inhibit VEGF, have been shown to improve progression-free survival, but have not demonstrated an impact on overall survival. PARP enzyme inhibitors, when combined with chemotherapy and carboplatin for the treatment of TNBC, have demonstrated a significant reduction in risk progression and mortality. However, the majority of PARP inhibitors are still in trials and their effectiveness in clini- cal settings has yet to be determined. Additional proposed targets for directed therapy against TNBC include cell signalling pathways involving EGFR or PI3K. Overall, issues such as treatment resistance and side effects are important challenges that must be overcome in order to enable improvements in patient prognosis and clinical impact.
RÉSUMÉ
Le cancer du sein triple négatif (CSTN) est un sous-type de cancer du sein auquel il manque les récepteurs d’œstrogènes (ER), les récepteurs de progestérone (PR) et l’expression de HER2. Il est caractérisé par un pronostic défavorable et une résistance aux traite- ments standards du cancer du sein. À l’heure actuelle, la chimiothérapie est encore l’option principale de traitement néoadjuvant pour les patients ayant le CSTN, bien qu’elle ait des niveaux variés d’efficacité sur la survie globale, ainsi que de nombreux effets secondaires sérieux. Les thérapies à base de platine ont été utilisées pour traiter le CSTN en conjonction avec la chimiothérapie, mais elles ne sont pas très efficaces étant donné l’hétérogénéité du CSTN. En raison de cela, d’autres approches novatrices, particulièrement celles qui ciblent les composantes moléculaires impliquées dans la pathogenèse du CSTN, font actuellement l’objet d’enquêtes. Les inhibiteurs de l’angiogenèse, dont les anticorps monoclonaux ou les petites molécules inhibant le VEGF, ont démontré la capacité d’améliorer la survie sans progression de la maladie, mais n’ont pas démontré d’impact sur la survie globale. Les inhibiteurs d’enzymes PARP, lorsque combinés avec la chimiothérapie et le carboplatine pour le traitement du CSTN, ont démontré une réduction significative du risque de progression et de la mortalité. Toutefois, la majorité des inhibiteurs PARP subissent encore des essais et leur efficacité clinique reste à être déterminée. D’autres cibles suggérées pour la thérapie dirigée contre le CSTN incluent les voies de signalisation impliquant le EGFR ou le PI3K. Dans l’ensemble, des problèmes tels la résistance au traitement et les effets secondaires sont des défis importants qui doivent être surmontés afin de permettre des améliorations au niveau du pronostic du patient et de l’impact clinique.
Article Details
- Authors publishing in the UOJM retain copyright of their articles, including all the drafts and the final published version in the journal.
- While UOJM does not retain any rights to the articles submitted, by agreeing to publish in UOJM, authors are granting the journal right of first publication and distribution rights of their articles.
- Authors are free to submit their works to other publications, including journals, institutional repositories or books, with an acknowledgment of its initial publication in UOJM.
- Copies of UOJM are distributed both in print and online, and all materials will be publicly available online. The journal holds no legal responsibility as to how these materials will be used by the public.
- Please ensure that all authors, co-authors and investigators have read and agree to these terms.
- Works are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
2. Foulkes WD, Smith IE, Reis-filho JS. Triple-Negative Breast Cancer. 2010 p. 1938-48.
3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429-34.
4. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94(1):15-21.
5. Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294-7. Siegfried Z, Bonomi S, Ghigna C, Karni R.
6. Regulation of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing in cancer. International Journal of Cell Biology. 2013;568931.
7. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4(1):127-50.
8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, Mcguire WL. Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene. Science. 1987;235(4785):177-82
9. LeRoith D, Roberts CT. The insulin-like growth factor system and cancer. Cancer Letters. 2003;195(2):127-37.
10. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, et al. The PIK- 3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3(8):772-5.
11. deGraffenried LA, Fulcher L, Friedrichs WE, Grünwald V, Ray RB, Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol. 2004;15(10):1510-6.
12. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23(18):3151-71.
13. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-74.
14. Loges S, Mazzone M, Hohensinner P, Carmeliet P. Silencing or Fueling Metastasis with VEGF Inhibitors: Antiangiogenesis Revisited. Cancer Cell. 2009;15(3):167-70.
15. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis. Cancer Cell. 2009;15(3):232-9.
16. Bosch A, Eroles P, Zaragoza R, Vina JR, Lluch A. Triple-negative breast cancer: molecular features, pathogenesis, treatment and current lines of research. Cancer Treat Rev. 2010;36(3):206-15.
17. Venkitaraman R. Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features. Expert Rev Anticancer Ther. 2010;10(2):199-207.
18. Staudacher L, Cottu PH, Diéras V, Vincent-Salomon A, Guilhaume MN, Es- calup L, et al. Platinum-based chemotherapy in metastatic triple-negativebreast cancer: The Institut Curie experience. Ann Oncol. 2011;22(4):848-56.
19. Gelmon K, Dent R, Mackey JR, Laing K, Mcleod D, Verma S. Targeting triple-negative breast cancer: Optimising therapeutic outcomes. Ann Oncol. 2012;23(9):2223-34.
20. O’Shaughnessy J, Miles D, Gray RJ, Dieras V, Perez E a, Zon R, et al. A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with meta- static breast cancer (MBC). J Clin Oncol. 2010;28(15):2-4.
21. Rugo H. Inhibiting Angiogenesis in Breast Cancer: The Beginning of the End or the End of the Beginning. J Clin Oncol. 2012;30(9):898-901.
22. Elice F, Rodeghiero F. PL-09 side effects of anti-angiogenic drugs. In: Thrombosis Research. 2012.
23. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, et al. Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis. Cancer Cell. 2009;15(3):220-31.
24. Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer. 2010;46(1):9-20.
25. Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol. 2008;8(4):363-9.
26. Chuang HC, Kapuriya N, Kulp SK, Chen CS, Shapiro CL. Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat. 2012;134(2):649-59.
27. Benafif S, Hall M. An update on PARP inhibitors for the treatment of cancer. Onco Targets Ther. 2015;8:519-28.
28. Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13(1):188.