The future of dialysis treatment: wearable artificial kidneys (WAKs)
Main Article Content
Abstract
Present day limitations in conventional dialysis therapies have prompted the medical community to explore alternative options in the management of end-stage renal disease (ESRD). The wearable artificial kidney (WAK) is a portable dialysis device, worn around an individual’s waist, which aims to provide ESRD patients with sustained hemodialysis. In this paper we will explore the mechanisms by which the WAK operates, as well as the evidence for its efficacy and feasibility in clinical practice.
RÉSUMÉ
Les limites actuelles des thérapies de dialyse conventionnelles ont incité la communauté médicale à explorer des options alterna- tives pour la prise en charge de l’insuffisance rénale chronique. Le rein artificiel portable (WAK, de l’anglais) est un appareil de dialyse portatif, porté autour de la taille d’un individu, qui vise à fournir une hémodialyse continue aux patients atteints d’insuffisance rénale terminale. Dans cet article, nous explorerons les mécanismes de fonctionnement du WAK, ainsi que les preuves de son efficacité et de sa faisabilité en pratique clinique.
Article Details
- Authors publishing in the UOJM retain copyright of their articles, including all the drafts and the final published version in the journal.
- While UOJM does not retain any rights to the articles submitted, by agreeing to publish in UOJM, authors are granting the journal right of first publication and distribution rights of their articles.
- Authors are free to submit their works to other publications, including journals, institutional repositories or books, with an acknowledgment of its initial publication in UOJM.
- Copies of UOJM are distributed both in print and online, and all materials will be publicly available online. The journal holds no legal responsibility as to how these materials will be used by the public.
- Please ensure that all authors, co-authors and investigators have read and agree to these terms.
- Works are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
2. Saran R, Li Y, Robinson B, et al. USRDS 2014 annual data report: atlas of end-stage renal disease in the United States. Renal Data System. 2014.
3. Abouna GM. Organ shortage crisis: problems and possible solutions. Trans- plant Proc. 2008;40(1):34-8.
4. Gura V, Matthew RB, Bieber S, et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight. 2016;1(8):pii: e86397.
5. Chiu YW, Teitelbaum I, Misra M, De Leon EM, Adzize T, Mehrotra R. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol. 2009;4(6):1089-96.
6. FHN Trial Group. Chertow GM, Levin NW, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363(24):2287-300.
7. William FH, Roy S, Davenport A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int. 2014;84(2):256-64.
8. Gura V, Davenport A, Beizai M, Ezon C, Ronco C. β2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis. 2009;54(1):104-11.
9. Agar WMJ. Review: Understanding sorbent dialysis systems. Nephrology. 2010;15(4):406-11.
10. Gura V, Masoud B, Carlos E, Polaschegg H. Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib Nephrol. 2005;149:325-33.
11. Gura V, Masoud B, Carlos E, Edmond R. Continuous renal replacement ther- apy for congestive heart failure: the wearable continuous ultrafiltration system. ASAIO J. 2006;52(1):59-61.
12. Komaba H, Fukagawa M. Phosphate-a poison for humans?Kidney Int. 2016;90(4):753-63.