3D Printing for 21st Century Medical Learners: Opportunities for Innovative Research and Collaboration

Contenu principal de l'article

AiLi Wang
Talia Chung
Hanan Anis
Alireza Jalali

Résumé

Abstract

With the commercialization of accessible 3D printers, using 3D printing for creation of personalized medical interventions has become a rapidly expanding area of research. In keeping with these developments, the Faculty of Medicine at the University of Ottawa has purchased 3D printers (Makerbot Replicator 2X and Ultimaker 2 Extended +) and launched a collaboration with Makerspace and the Health Sciences Library to investigate local opportunities to incorporate 3D printing into education, simulations and research. This article aims to summarize some of the recent developments in 3D printing and introduce readers to how one could use 3D printing for personalized medicine. 

Résumé

Avec la venue de la commercialisation d’imprimantes 3D accessibles, l’emploi de l’impression 3D pour la création d’interventions médicales personnalisées est un domaine de recherche en développement rapide. Afin de rester à jour avec ces développements, la Faculté de Médecine de l’Université d’Ottawa s’est procuré des imprimantes 3D (Makerbot Replicator 2X et Ultimaker 2 Extended +) et a entamé une collaboration avec Makerspace et la Bibliothèque des Sciences de la Santé, pour examiner des opportunités locales visant à incorporer l’impression 3D à l’éducation, aux simulations et à la recherche. Cet article vise à résumer certains des développe- ments récents en impression 3D et à présenter aux lecteurs la manière dont celle-ci peut être utilisée pour la médecine personnalisée. 


Renseignements sur l'article

Rubrique
Commentary
Bibliographies de l'auteur-e

AiLi Wang, University of Ottawa

University of Ottawa, Faculty of Medicine, MD 2018 (Anglophone)

Talia Chung, University of Ottawa

Health Sciences Library Interim Director

Hanan Anis, University of Ottawa

Professor in the School of Electrical Engineering and Computer Science, Faculty Coordinator for Entrepreneurship and Innovation, Chair in Entrepreneurial Engineering Design (CEED)

Alireza Jalali, University of Ottawa

Faculty of Medicine

Distinguished Teacher and Teaching Chair
Director of Practical Exam and Anatomy Professor

Références

1. Blackman J. The 1st Amendment, 2nd Amendment, and 3D Printed Guns. Tenn Law Rev. 2014;81(479):479-538.
2. Negi S, Dhiman S, Sharma RK. Basics and applications of rapid prototyping medical models. Rapid Prototyp J. 2014;20(3):256-67.
3. Srivastava M, Utkarsh, Yashaswi R. Trends in the Domain of rapid Prototyping: A Review. Int J Mech Robot Res. 2014;3(3):747-62.
4. Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014;39(10):704-11.
5. Bhatia SK, Sharma S. 3D-printed prosthetics roll off the presses. Chem Eng Prog. 2014;110(5):28-33.
6. Giovinco NA, Dunn SP, Dowling L, et al. A Novel Combination of Printed 3-Dimensional Anatomic Templates and Computer-assisted Surgical Simulation for Virtual Preoperative Planning in Charcot Foot Reconstruction. J Foot Ankle Surg. 2012;51(3):387-93.
7. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6-9.
8. Kurenov SN, Ionita C, Sammons D, Demmy TL. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J Thorac Cardiovasc Surg. 2015;149(4):973-9.e1.
9. Schwartz A, Money K, Spangehl M, et al. Office-based rapid prototyping in orthopedic surgery: a novel planning technique and review of the literature. Am J Orthop (Belle Mead NJ). 2015;44(1):19-25.
10. Thomas DJ, Azmi MABM, Tehrani Z. 3D additive manufacture of oral and maxillofacial surgical models for preoperative planning. Int J Adv Manuf Technol. 2014;71(9-12):1643-51.
11. Silberstein JL, Maddox MM, Dorsey P, Feibus A, Thomas R, Lee BR. Physical models of renal malignancies using standard cross-sectional imaging and 3-dimensional printers: A pilot study. Urology. 2014;84(2):268-72.
12. Spears, T. Meet the Ottawa boy who’s about to get a new hand (with video) [Internet]. Ottawa Citizen; 2015 Mar 18. [updated 2015 Mar 18; cited 2016 Apr 2] Available from: http://ottawacitizen.com/news/local-news/meet-the-ottawa-boy-whos-about-to-get-a-new-hand/.
13. Adams JW, Paxton L, Dawes K, Burlak K, Quayle M, McMenamin PG. 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry. Br J Ophthalmol. 2015:99(9):1162-7.
14. Gharenazifam M, Arbabi E. Anatomy-based 3D skeleton extraction from femur model. J Med Eng Technol. 2014;38(8):402-10.
15. Mcmenamin PG, Quayle MR, Mchenry CR, Adams JW. The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ. 2014;7(6):479-86.
16. National Institutes of Health. NIH 3D Print Exchange [Internet]. U.S. Department of Health and Human Services [cited 2016 Feb 29]. Available from: http://3dprint.nih.gov/
17. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D Printing for the Radiologist 1. 2015;35(7):1965-88.
18. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, et al. 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335-41.